Method for
Estimating Emissions
Reductions for
Composting

April 21, 2016

Life-cycle Analysis

- ARB in collaboration with CalRecycle have updated the compost emission reduction factor (CERF)
- The purpose of this report is to explain a life-cycle method to quantify the California-specific GHG emission reductions from using compost and the GHG emissions associated with compost management

GHG Emissions and Benefits

 This method evaluates the GHG emissions of composting and GHG emissions reduction benefits associated with the agricultural use of composting endproducts, as compared to a baseline scenario of waste landfilling with gas collection

Baseline Scenario
Waste Landfilling and Gas Collection

Alternative Scenario
Composting and Agricultural Use

GHG Emissions and Benefits

- The GHG emissions considered are:
 - transportation
 - process emissions
 - fugitive CH₄ and N₂O emissions

- The GHG emissions reduction benefits considered are:
 - avoided methane emissions from landfilling
 - reduced soil erosion
 - decrease in fertilizer and herbicide use

Compost Emission Reduction Factor (CERF)

• CERF was determined for food waste, yard trimmings, and mixed organics

• CERF =
$$\mathbf{B}_{total} - \mathbf{E}_{total}$$

- **B**_{total} = total emission reduction **benefit** due to application of compost
- E_{total} = total emissions due to composting

Composting Emissions (E_{total})

•
$$\mathbf{E}_{\text{total}} = \mathbf{T}_{e} + \mathbf{P}_{e} + \mathbf{F}_{e}$$

- E_{total} = total emission from composting
- T_e = net additional transportation emissions from composting as compared to landfilling
- P_e = Net additional process emissions from composting as compared to landfilling
- F_e = fugitive emissions from composting

Composting Emissions (E_{total})

Emission Type	Emission (MTCO ₂ E/ton of feedstock)
Transportation emissions (T _e)	0
Process emissions (P _e)	0
Fugitive CH ₄ emissions (F _e)	0.049
Fugitive N ₂ O emissions (F _e)	0.021
Total	0.070

$$E_{total} = T_e + P_e + F_e$$

Compost Emission Reductions (B_{total})

- $\mathbf{B_{total}} = \mathsf{ALF_b} + ((\mathbf{E_b} + \mathbf{F_b} + \mathbf{H_b}) * \mathbf{C_{use}})$
- B_{total} = total emission reduction benefit due to compost use
- ALF_b = emission reductions associated with the avoidance of methane emissions at landfills
- E_b = emission reduction associated with decreased soil erosion
- F_h = factor to account for reduced fertilizer use
- H_b = factor to account for reduced herbicide use
- C_{use} = conversion factor to convert from tons to compost to tons of feedstock

Compost Emission Reductions (B_{total})

Emission reduction type	Emission reduction (MTCO ₂ E/ton of feedstock)	Conversion factor (C _{use})	Final emission reduction by waste type (MTCO ₂ E/ton of feedstock)		
			Food waste	Yard trimmings	Mixed Organics
Avoided landfill emissions (ALF _b)	N/A	N/A	0.39	0.21	0.33
Decreased soil erosion (E _b)	0.25	0.58	0.15	0.15	0.15
Decreased fertilizer use (F _b)	0.26	0.58	0.15	0.15	0.15
Decreased herbicide use (H _b)	0.0	0.58	0.0	0.0	0.0
Total	N/A	N/A	0.69	0.51	0.63

$$\mathbf{B_{total}} = \mathbf{ALF_b} + ((\mathbf{E_b} + \mathbf{F_b} + \mathbf{H_b}) * \mathbf{C_{use}})$$

Final Compost Emission Reduction Factor

Waste Type	Composting Benefits (B _{total})	, · · · · · · · · · · · · · · · · · · ·	Final CERF (MTCO ₂ E/ton waste input)
Food waste	0.69	0.07	0.62
Yard trimmings	0.51	0.07	0.44
Mixed Organics	0.63	0.07	0.56

$$CERF = B_{total} - E_{total}$$

Variability Analysis

- Uncertainty due to:
 - Variability in the compost processing and physical soil properties
 - Lack of scientific understanding of emissions pathways for landfills and compost piles
 - Absence of literature articles
 - Reliance on non-California specific study locations and default assumptions
- Erosion and water use results were extrapolated from lab-scale experiments instead of macro scale field methods
- Herbicide results were based on only one study, and pesticide life-cycle information was used as a proxy

Public Comments

- The draft document is available for public comment through May 6, 2016
- Comments can be sent:
 - via email to Ms. Mei Fong at mei.fong@arb.ca.gov
 - mailed to Mr. Robert Krieger, Emissions Assessment Branch, P.O. Box 2815,
 Sacramento, CA 95812
- Visit the Waste Management Sector website at http://www.arb.ca.gov/cc/waste/waste.htm for more information

Staff Recommendation

- Staff recommends that Task Force send a comment letter to ARB regarding:
- Process emissions from composting
- Transportation emissions from composting and landfilling
- Total composting emissions calculated
- Reduced fertilizer use emissions reduction benefit from compost application
- Laboratory scale experiment versus macro scale field studies
- Large uncertainty in factors
- Emissions reduction benefits from water use